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Lattice Boltzmann model for binary mixtures
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An a priori derivation of the lattice Boltzmann equations for binary mixtures is provided by discretizing the
Boltzmann equations that govern the evolution of binary mixtures. The present model leads to a set of
two-fluid hydrodynamic equations for the mixture. In existing models, employing the single-relaxation-time
approximation, the viscosity and diffusion coefficients are coupled through the relaxation paramibies
limited to unity Prandtl number and Schmidt number. In the present model the viscosity and diffusion coeffi-
cient are independently controlled by two relaxation parameters, thus enabling the modeling of mixtures with
an arbitrary Schmidt number. The theoretical framework developed here can be readily applied to multiple-
species mixing.
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The lattice Boltzmann equatioitBE) [1-6] is emerging  Moreover, it is difficult to construct the continuum-based
as an effective computational method based on fundamentatodels from first principles. Therefore for these flows, there
physics for simulating complex flows such as multiphasgs a growing interest in using the lattice Boltzmann equation
[7-100 and multiple-component flows[11-13, flows [11-13. In this paper, we develop a unified approach for
through porous mediécf. Ref.[5]), and particulate suspen- developing the lattice Boltzmann models for multicompo-
sions in fluid flows (e.g., Ref.[14]). Recently, important nent fluids within the framework of kinetic theory. This work
strides have been made on the theoretical front, establishiné & part of our continuing effort to set the lattice Boltzmann
from fundamental principles, the physical legitimacy and€quation on a rigorous foundati¢®,3,9,10. Specifically, we
mathematical rigor of the LBE method. Most importanﬂy, it will derive a conservative discretized version of the con-
has been proved that the lattice Boltzmann equation can Héwuum Boltzmann equation for fluid mixtures. We shall
derived from the Boltzmann equati@npriori [2—4,9,1Q. It present a model that is capable of simulating either a mis-
should be pointed out that the Boltzmann equation br|dge§|b|e or immiscible binary mixture. The lattice Boltzmann
the gap between the microscopic dynamics and the macr@duation considereq here can be extended to a mixture of
scopic hydrodynamics. Indeed the Navier-Stokes equation§lree or more species.
can be rigorously derived from the Boltzmann equation via The kinetic theory of gas mixtures encompasses a signifi-
the Chapman-Enskog analysis. The second important thegant amount of literaturée.g., Refs{17-27). In a manner
retical result is the demonstration that the lattice Boltzmanrsimilar to the derivation of the Boltzmann equation for a
equation is indeed equivalent to an explicit finite differencepure system of single species, one can deNwmultaneous
scheme of the Navier-Stokes equati§t5]. These theoreti- €quations for a system & species by reducing the appro-
cal developments have completely and comprehensively re2riate Liouville equation. For the sake of simplicity without
solved all doubts surrounding the early lattice-gas automatkss of generality, we shall only discuss the Boltzmann equa-
[16] and lattice Boltzmann models. The present day latticdions for a binary system,

Boltzmann equation is a viable alternative to the continuum

methods for simulating fluid flows. Much of the rigorous G fA+EVIA+a, V, FA=QM+Q"®, 1)
work with lattice Boltzmann methods so far has been re-

stricted to simple single-phase single-component fluids. RewhereQ”®=Q® is the collision term due to the interaction
cently, the LBE model for single-component multiphase flu-between two different species A and B. Obviously, for an
ids has been derived from the Enskog equafi®ri0. A  N-component system, there will ¢ such equations, each
rigorous mathematical development of the lattice BoltzmanreontainingN collision terms on the right-hand side. In gen-
method for multicomponent fluids is still in its infancy and eral, the collision term i$23-29

such is the object of the present work.

In many practical flows involving pollutant dispersion,
chemical processing, and combustor mixing and reaction,
mass and momentum transport in multispecies fluids plays
an important role. For these applications, the continuum®©Obviously, the equations for a system of multiple species are
based models can be difficult to compute due to various reanuch more formidable to analyze than the comparable equa-
sons such as complexity of flow geometry and phase changéon for a pure system of single species. The first modeling

objective is to find a suitable approximation for the collision

terms of Eq(2). Many of the kinetic models for gas mixtures
*Electronic address: luo@icase.edu; http://www.icase-ela/ are based upon the linearized Boltzmann equaft5)2§.
"Electronic address: girimaji@aero.tamu.edu The simplest model for a binary mixture is that in Rf8],

QAB=fdfsdQGABII§B—§A||[f’Af’B—fAfB]- )
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which is an extension of the single-relaxation-time model for P (£—u)?
a pure systengthe Bhatnagar-Gross-Krook or BGK moglel f"(o):f‘"(o)z—”exp{ - 9
[28]. (2R, T)P"2 2R, T

With the BGK approximatiorj18,2§, the collision inte- ) )
gral Q”[o,s e (A, B)] becomes Two salient features of the model equatioi™$ should be

addressed. First, the cross-collision tedfff of Eq. (6) is
exact for the Maxwell molecules, whose interaction potential
obeys the inverse fifth-power law. Equatio(®, therefore,
can be considered to be a model for the Maxwell 3.
wheref?©® andfs(® are Maxwellians, One immediate consequence of this approximation is that the
diffusion force does not contain a thermal diffusion term, as
fo(0)_ Po (é—u,)? it should. Second, the BGK approximation of the self-
T (2R, T,020 N 2R,T,

1 1
oo _ __ o__f0(0) oS _ _ o__fos(0)
R LA L e e L L)

gs

' (4) collision termJ?“ of Eq. (3) imposes the limitation of a fixed
Prandtl numbefof unity). However, both these limitations of
) the model can be overcome by using the linearized Boltz-
f0s(0) = Po ex;{ _ (£~ Ugs) } (5) mann equation with multiple relaxation timgz9—31] and a
(2wR,T,)P" 2R, Ty | nonlinear approximation of the collision terrf20,21,33.

We construct a lattice Boltzmann model for a binary mix-
where D is the spatial dimensionR,=kg/m, is the gas ture based on the model equatio{@s. In the present work
constant of ther specieskg is the Boltzmann constant, and we will only consider the isothermal case such thgt=T,

m, is the molecular mass of the species. There are three =T =T=const. Consequently, we can also ignore the
adjustable relaxation parameters in the collision ters;  terms related to thermal effects #7° of Eq. (6) by setting
As, and N ys=(ps/ps)hss. The first Maxwellianfe @ is =M, =0, ie.,

characterized by the conserved variables of each individual

species: the mass densip, (or the number densityn,, e 1 p, 70O

=p,/m,), the mass velocity,, and temperatur&, ; while J7=- T_D ; kgT
the second Maxwelliaf”(®, andfs?(® is characterized by

four adjustable parameters;., Uy, T,s, andT,. There  where the equilibrium functiorf“(® for the o species is
are several considerations in determining these arbitrary pahosen to be the Maxwellian equilibrium distribution de-

rameters: simplicity of the resulting theory, accuracy of ap-pending on the mass velocity of thespeciesu, as
proximation, and ease of computatif2d]. One salient dif-

(§_ u)'(ut)'_ ug)! (10)

ference between using and T of the mixture in the p (£-u,)?
Maxwellian f75(°) as opposed to using, and T, for the fo(0)= —Th r{— R ‘_Tl_ (12)
species is that the former choice leads to a single-fluid theory (27R,T) o

while the latter leads to a two-fluid theof20,21]. Obvi- _ ) ) ) .
ously, when the properties of the two species are vastly difWe can derive th_e lattice Boltzmann equation by discretizing
ferent, the two-fluid theory is preferrd@4]. the model equation) as in Refs[2,3,9,1Q:

The cross-collision ternd?s can be better approximated

by expandingf” around the Maxwelliafi20], Falxite,du,t+ 6) — Fo(x 1) =Qg, (12)
fo(0) 3/ 2 where the collision ternf 7 =J377+J7°—F76,, and
gs — (o
=- f0Cy (Uy—UQ) + p75 | 55— —1
PokeT o 212R,T, J79=— (1lr,) [f5— 701, (139
2
C
X(T,=T)—M g(—"—l (Uy=u)?|, (6 o(eq)
o s\ 2R, T o=t 1psfa
7 JZ*z—T—& 5= (€,—u)- (U, —uy), (13b)
wherec,=(&—u,) is the peculiar(or therma) velocity of b Poc
the o species, andM . is a function of the density and . 5
temperature, and other parametg28,27. Fa=—Wap,l(e,-a5)/cc], (139
We now consider the following model equations for a -
binary mixture due to Sirovich20]: wherep, andp,, andu, andu, are the mass densities and
flow velocities for species ands, they are the moments of
W fI+EVIT+a, V, f7=397+77, (7)  the distribution functions

where the self-collision ternd?? is approximated by the - #(0)

BGK model of Eq.(3), and the cross-collision terd’s is Pg=§a: fa=§a: fo s (143
given by Eq.(6). Solving Eqs.(7) by means of iteratioricf.

Refs.[20,27), one first obtains

u,=>, fee,=>, 170 14b
U=u=u, T,=TT, ®) potle= 2, =2 10, (14D
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andp andu are, respectively, the mass density and the baryThe mass conservation of each individual species reflects the
centric velocity of the mixture:p=p,+p,, pu=p,u, factthatall the particles, regardless of their identity, are con-
+p.u,. The equilibriumf?© is a second-order Taylor ex- served in a collision without chemical reactions.

pansion off 7(®) of Eq. (11) [27], and has the following form, The Navier-Stokes equation of the mixture[27]

in general 27]:
J [ ] paatua+pouo'vu0=_Vpa+pUV0V2u0'

- (prrpngDp) (u(r_ uq) +prra(r!
(21)

0)_
fg( )_fz(GQ)

] ., (158

1
1+ _Z(ea_u)'(ua'_u)
CS

wherep,=n kgT=p,R,T is the partial pressure of the

(&) (8w U2 , PR ap
2 7 3 species, and the viscosity of thespecies is
Cs 2¢cg s

1+

feP=w,p, (15b)

v,=C28(1,—1/2). (22)

where coefficient§w,} depend on the discrete velocity set

{e,}. For the sake of concreteness and simplicity withoutEquation(21) is consistent with the results in R¢R1].

losing generality, we shall restrict ourselves to a nine- The difference between the Navier-Stokes equation for
velocity model on a two-dimensional square 1atti@2Q9 individual species ¢ ands) leads to

mode). In this case,

1 pp
4/9, a=0 T_D(uo_uq):_ da_{[vfrvzua_ V§V2u§]
= 1/9, :1—4 _ _
Wa “ (16 +[d;8u+u-V su+du-Vu, (23
1/36, a=5-8.

where Su=(u,—u,), U=3(u,+u,), p=nkgT is the total
The sound speed of the modgl=c/\/3, c=&,/8, where  pressure, and=n,+ n,. The diffusion force
Sy is the lattice constant of the underlying square lattice. The
forcing term F¢ is derived in Refs[9,10]. The collision
termsJ?? and J2° are so constructed to preserve the local
mass and momentum conservation laws. The zeroth- and
first-order moments of these terms are

nO'

_>+

n

n PoPs

W(ao_ag)
(24)

olls Vinp+
o (m—m,)Vinp

dg=v(

includes the effects due to the molar concentration gradient
V(n,/n), the pressure gradieMp, and external forcesa(,

% \]gd':; JZ”:% Fg:o, (17@ andag)_
It has already been assumed in the two-fluid equations
that derivatives are slowly varying on the time scale of Max-
J%% =0 17b wellization [21]. Thus to the leading order, we have
[e3 a 1 ( )
(ua'_ ug) = (nzlna'ng) Do’gdov (25)
> 36, =— (1) (pepslp) (Uy—uy), (170 where the mutual diffusion coefficient in the mixture is
D,s=[(kgT)/(nm;my)] 7p.. (26)
; Fe€a="Pols (179 By definition [26] the mass flux of ther species is

The left-hand side of Eq12) can be expanded in a Taylor jo=pos(U;—U)=—7ppd,.

series ind, up to second orde(cf. Refs.[3,27)), then The continuity equatiori19) can be rewritten as

8D, T3+ 3 6D 1=00"+IF~FI8, (19 Dpo+p,V-U+V-j,=0, 27)

whereD,=(d;+ €, V). By means of the Chapman-Enskog where D= (4, +u- V). By assuming tha¥-u=0, we ob-
analysis, we can derive the hydrodynamic equations for theain the following advection-diffusion equation for an iso-

mixture from Eq.(18) (see details in Ref[27]). The mass

thermal mixture:

conservation law for each individual species and the mixture

can be derived immediately from E(L8):

1_ |pep
(?tp(,-"_v'(P(ru(;):EV[ Tng(U(r_ ug) ) (19)
dp+V-(pu)=0. (20

atp(r_l—u'vpozv'(TD_ %)pda' (28)

Thus the mutual diffusion coefficient given by E§6) must
be modified for the LBE model,

1

D =[cZ/(nm,m)](7p— } (29)

),
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to include the second-order discrete effg23]. The second important feature of the present work is that
Unlike the existing lattice Boltzmann models for binary the model is based upon a two-fluid theory of binary mix-

mixtures [11-13, the diffusion coefficients of the present tures. The previous mode[41-13,22, on the other hand,

model are independent of the viscosity. The diffusion coeffi-are derived from a simpler, but restrictive, one-fluid theory.

cients only depend on the parametgy and other relevant In the single-fluid models one is constrained to usedtle

physical properties of the mixture. Also, positive and nega-oc “equilibrium velocity” [11,12,23

tive (7p—1/2) correspond to the miscible and immiscible

mixtures, respectively. We have verified, Hg9), and ob- uCD=(7.p Uy+ 7op U (TPt Tops)
served the phase separation whep<{ 1/2)<<0 in numerical
simulations[34]. in the equilibriumf?©) in order to satisfy the local conser-

We have constructed a lattice Boltzmann model for binary,ation laws. As a result, the viscosity and diffusion coeffi-
mixtures with several important features. The lattice Boltz-cjent cannot be independently adjusted without exerting fic-
mann model is directly derived from the kinetic model equa-tjtious interactions omd hocfree energies. The analysis of
tions using a formal discretization procedure. The latticehese models becomes unnecessarily tedious and cumber-
model thus inherits the sound physics and mathematical ”g%ome[ll,lz. The models with free energigd3] do not
incumbent in kinetic theory. This is in contrast to previousyie|d correct hydrodynamic equatiofi®,10]. Furthermore,
lattice Boltzmann models for mixturgd1-13, which are  these models are single-fluid models which cannot be ap-
not directly based on the fundamental physics of kinetiGyjied to mixtures of species with vastly different properties.
equations. These models rely on fictitious “interactions” |n the present two-fluid model, the diffusion coefficient is
[11,12] or ad hoc*free energies’[13] to produce the requi-  jndependent of the viscosity, and is determined by the param-
site mixing. These nonphysical effects present a further probster 7, and other relevant physical properties of the mixture.
lem since they are not easily amenable to mathematicafhe model is capable of simulating either miscible or immis-

analysig9,10]. The heuristic elements of the previous lattice .jpje fluids by changing the sign of-§— 1/2) [34].
Boltzmann model§11-13 have been eliminated, resulting

in a physically justifiable model that is simple to compute. L.-S.L. is grateful to Professor V. Sofonea for sharing Ref.
Further, due to the direct connection to kinetic theory, thg22] before its publication, and to Professor D. d’Huneie
derivation of the hydrodynamic equations associated with théor his insightful critical comments. This work is partially
lattice Boltzmann model is significantly simplified and ren- supported by the U.S. Air Force Office for Scientific Re-
dered mathematically more rigorous. search(AFOSR under Grant No. F49620-01-1-0142.
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