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Lattice Boltzmann model for binary mixtures
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An a priori derivation of the lattice Boltzmann equations for binary mixtures is provided by discretizing the
Boltzmann equations that govern the evolution of binary mixtures. The present model leads to a set of
two-fluid hydrodynamic equations for the mixture. In existing models, employing the single-relaxation-time
approximation, the viscosity and diffusion coefficients are coupled through the relaxation parametert, thus
limited to unity Prandtl number and Schmidt number. In the present model the viscosity and diffusion coeffi-
cient are independently controlled by two relaxation parameters, thus enabling the modeling of mixtures with
an arbitrary Schmidt number. The theoretical framework developed here can be readily applied to multiple-
species mixing.
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The lattice Boltzmann equation~LBE! @1–6# is emerging
as an effective computational method based on fundame
physics for simulating complex flows such as multipha
@7–10# and multiple-component flows@11–13#, flows
through porous media~cf. Ref. @5#!, and particulate suspen
sions in fluid flows ~e.g., Ref. @14#!. Recently, important
strides have been made on the theoretical front, establish
from fundamental principles, the physical legitimacy a
mathematical rigor of the LBE method. Most importantly,
has been proved that the lattice Boltzmann equation can
derived from the Boltzmann equationa priori @2–4,9,10#. It
should be pointed out that the Boltzmann equation brid
the gap between the microscopic dynamics and the ma
scopic hydrodynamics. Indeed the Navier-Stokes equat
can be rigorously derived from the Boltzmann equation
the Chapman-Enskog analysis. The second important t
retical result is the demonstration that the lattice Boltzma
equation is indeed equivalent to an explicit finite differen
scheme of the Navier-Stokes equations@15#. These theoreti-
cal developments have completely and comprehensively
solved all doubts surrounding the early lattice-gas autom
@16# and lattice Boltzmann models. The present day latt
Boltzmann equation is a viable alternative to the continu
methods for simulating fluid flows. Much of the rigorou
work with lattice Boltzmann methods so far has been
stricted to simple single-phase single-component fluids.
cently, the LBE model for single-component multiphase fl
ids has been derived from the Enskog equation@9,10#. A
rigorous mathematical development of the lattice Boltzma
method for multicomponent fluids is still in its infancy an
such is the object of the present work.

In many practical flows involving pollutant dispersio
chemical processing, and combustor mixing and react
mass and momentum transport in multispecies fluids p
an important role. For these applications, the continuu
based models can be difficult to compute due to various
sons such as complexity of flow geometry and phase cha
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Moreover, it is difficult to construct the continuum-base
models from first principles. Therefore for these flows, the
is a growing interest in using the lattice Boltzmann equat
@11–13#. In this paper, we develop a unified approach
developing the lattice Boltzmann models for multicomp
nent fluids within the framework of kinetic theory. This wor
is a part of our continuing effort to set the lattice Boltzma
equation on a rigorous foundation@2,3,9,10#. Specifically, we
will derive a conservative discretized version of the co
tinuum Boltzmann equation for fluid mixtures. We sha
present a model that is capable of simulating either a m
cible or immiscible binary mixture. The lattice Boltzman
equation considered here can be extended to a mixtur
three or more species.

The kinetic theory of gas mixtures encompasses a sig
cant amount of literature~e.g., Refs.@17–27#!. In a manner
similar to the derivation of the Boltzmann equation for
pure system of single species, one can deriveN simultaneous
equations for a system ofN species by reducing the appro
priate Liouville equation. For the sake of simplicity withou
loss of generality, we shall only discuss the Boltzmann eq
tions for a binary system,

] t f A1j•“ f A1aA•“j f A5QAA1QAB, ~1!

whereQAB5QBA is the collision term due to the interactio
between two different species A and B. Obviously, for
N-component system, there will beN such equations, eac
containingN collision terms on the right-hand side. In ge
eral, the collision term is@23–25#

QAB5E djBdVsABijB2jAi@ f 8A f 8B2 f A f B#. ~2!

Obviously, the equations for a system of multiple species
much more formidable to analyze than the comparable eq
tion for a pure system of single species. The first model
objective is to find a suitable approximation for the collisio
terms of Eq.~2!. Many of the kinetic models for gas mixture
are based upon the linearized Boltzmann equation@25,28#.
The simplest model for a binary mixture is that in Ref.@18#,
©2002 The American Physical Society01-1
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which is an extension of the single-relaxation-time model
a pure system~the Bhatnagar-Gross-Krook or BGK mode!
@28#.

With the BGK approximation@18,28#, the collision inte-
gral Qs§@s,§P(A, B) # becomes

Jss52
1

ls
@ f s2 f s(0)#, Js§52

1

ls§
@ f s2 f s§(0)#, ~3!

where f s(0) and f s§(0) are Maxwellians,

f s(0)5
rs

~2pRsTs!D/2
expF2

~j2us!2

2RsTs
G , ~4!

f s§(0)5
rs

~2pRsTs§!
D/2

expF2
~j2us§!

2

2RsTs§
G , ~5!

where D is the spatial dimension,Rs5kB /ms is the gas
constant of thes species,kB is the Boltzmann constant, an
ms is the molecular mass of thes species. There are thre
adjustable relaxation parameters in the collision terms:ls ,
l§ , and ls§5(r§ /rs)l§s . The first Maxwellian f s(0) is
characterized by the conserved variables of each individ
species: the mass densityrs ~or the number densityns

5rs /ms), the mass velocityus , and temperatureTs ; while
the second Maxwellianf s§(0), andf §s(0), is characterized by
four adjustable parameters:us§ , u§s , Ts§ , andT§s . There
are several considerations in determining these arbitrary
rameters: simplicity of the resulting theory, accuracy of a
proximation, and ease of computation@24#. One salient dif-
ference between usingu and T of the mixture in the
Maxwellian f s§(0) as opposed to usingus and Ts for the
species is that the former choice leads to a single-fluid the
while the latter leads to a two-fluid theory@20,21#. Obvi-
ously, when the properties of the two species are vastly
ferent, the two-fluid theory is preferred@24#.

The cross-collision termJs§ can be better approximate
by expandingf s around the Maxwellian@20#,

Js§52
f s(0)

rskBTs
FmDcs•~us2u§!1mT

3

2 S cs
2

2RsTs
21D

3~Ts2T§!2Ms§S cs
2

2RsTs
21D ~us2u§!

2G , ~6!

wherecs5(j2us) is the peculiar~or thermal! velocity of
the s species, andMs§ is a function of the density and
temperature, and other parameters@20,27#.

We now consider the following model equations for
binary mixture due to Sirovich@20#:

] t f s1j•“ f s1as•“j f s5Jss1Js§, ~7!

where the self-collision termJss is approximated by the
BGK model of Eq.~3!, and the cross-collision termJs§ is
given by Eq.~6!. Solving Eqs.~7! by means of iteration~cf.
Refs.@20,27#!, one first obtains

us5u§5u, Ts5T§5T, ~8!
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f s(0)5 f s§(0)5
rs

~2pRsT!D/2
expF2

~j2u!2

2RsT G . ~9!

Two salient features of the model equations~7! should be
addressed. First, the cross-collision termJs§ of Eq. ~6! is
exact for the Maxwell molecules, whose interaction poten
obeys the inverse fifth-power law. Equations~7!, therefore,
can be considered to be a model for the Maxwell gas@20#.
One immediate consequence of this approximation is that
diffusion force does not contain a thermal diffusion term,
it should. Second, the BGK approximation of the se
collision termJss of Eq. ~3! imposes the limitation of a fixed
Prandtl number~of unity!. However, both these limitations o
the model can be overcome by using the linearized Bo
mann equation with multiple relaxation times@29–31# and a
nonlinear approximation of the collision terms@20,21,32#.

We construct a lattice Boltzmann model for a binary m
ture based on the model equations~7!. In the present work
we will only consider the isothermal case such thatTs5T§

5Ts§5T5const. Consequently, we can also ignore t
terms related to thermal effects inJs§ of Eq. ~6! by setting
mT5Ms§50, i.e.,

Js§52
1

tD

r§

r

f s(0)

kBT
~j2u!•~us2u§!, ~10!

where the equilibrium functionf s(0) for the s species is
chosen to be the Maxwellian equilibrium distribution d
pending on the mass velocity of thes speciesus as

f s(0)5
rs

~2pRsT!D/2
expF2

~j2us!2

2RsT G . ~11!

We can derive the lattice Boltzmann equation by discretiz
the model equations~7! as in Refs.@2,3,9,10#:

f a
s~xi1ead t ,t1d t!2 f a

s~xi ,t !5Va
s , ~12!

where the collision termVa
s5Ja

ss1Ja
s§2Fa

sd t , and

Ja
ss52 ~1/ts! @ f a

s2 f a
s(0)#, ~13a!

Ja
s§52

1

tD

r§

r

f a
s(eq)

cs
2 ~ea2u!•~us2u§!, ~13b!

Fa
s52wars @~ea•as!/cs

2# , ~13c!

wherers andr§ , andus andu§ are the mass densities an
flow velocities for speciess and§, they are the moments o
the distribution functions

rs5(
a

f a
s5(

a
f a

s(0) , ~14a!

rsus5(
a

f a
sea5(

a
f a

s(0)ea , ~14b!
1-2
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andr andu are, respectively, the mass density and the ba
centric velocity of the mixture:r5rs1r§ , ru5rsus

1r§u§ . The equilibriumf a
s(0) is a second-order Taylor ex

pansion off s(0) of Eq. ~11! @27#, and has the following form
in general@27#:

f a
s(0)5 f a

s(eq)F11
1

cs
2 ~ea2u!•~us2u!G , ~15a!

f a
s(eq)5warsF11

~ea•u!

cs
2

1
~ea•u!2

2cs
4

2
u2

cs
2G , ~15b!

where coefficients$wa% depend on the discrete velocity s
$ea%. For the sake of concreteness and simplicity witho
losing generality, we shall restrict ourselves to a nin
velocity model on a two-dimensional square lattice~D2Q9
model!. In this case,

wa5H 4/9, a50

1/9, a51 –4

1/36, a55 –8.

~16!

The sound speed of the modelcs5c/A3, c5dx /d t , where
dx is the lattice constant of the underlying square lattice. T
forcing term Fa

s is derived in Refs.@9,10#. The collision
termsJa

ss and Ja
s§ are so constructed to preserve the lo

mass and momentum conservation laws. The zeroth-
first-order moments of these terms are

(
a

Ja
ss5(

a
Ja

§s5(
a

Fa
s50, ~17a!

(
a

Ja
ssea50, ~17b!

(
a

Ja
§sea52 ~1/tD!~rsr§/r! ~us2u§!, ~17c!

(
a

Fa
sea52rsas . ~17d!

The left-hand side of Eq.~12! can be expanded in a Taylo
series ind t up to second order~cf. Refs.@3,27#!, then

d tDa f a
s1 1

2 d t
2Da

2 f a
s5Ja

ss1Ja
s§2Fa

sd t , ~18!

whereDa5(] t1ea•“). By means of the Chapman-Ensko
analysis, we can derive the hydrodynamic equations for
mixture from Eq.~18! ~see details in Ref.@27#!. The mass
conservation law for each individual species and the mixt
can be derived immediately from Eq.~18!:

] trs1“•~rsus!5
1

2
“•Frsr§

tDr
~us2u§!G , ~19!

] tr1“•~ru!50. ~20!
03530
-

t
-

e

l
nd

e

e

The mass conservation of each individual species reflects
fact that all the particles, regardless of their identity, are c
served in a collision without chemical reactions.

The Navier-Stokes equation of the mixture is@27#

rs] tus1rsus•“us52“ps1rsns¹2us

2 ~rsr§/tDr! ~us2u§!1rsas ,

~21!

whereps5nskBT5rsRsT is the partial pressure of thes
species, and the viscosity of thes species is

ns5cs
2d t~ts21/2!. ~22!

Equation~21! is consistent with the results in Ref.@21#.
The difference between the Navier-Stokes equation

individual species (s and§) leads to

1

tD
~us2u§!52

rp

rsr§
ds2$@ns¹2us2n§¹

2u§#

1@] tdu1u•“du1du•“u, ~23!

where du5(us2u§), u5 1
2 (us1u§), p5nkBT is the total

pressure, andn5ns1n§ . The diffusion force

ds5“S ns

n D1
nsn§

nr
~m§2ms!“ ln p1

rsr§

rp
~as2a§!

~24!

includes the effects due to the molar concentration grad
“(ns /n), the pressure gradient“p, and external forces (as

anda§).
It has already been assumed in the two-fluid equati

that derivatives are slowly varying on the time scale of Ma
wellization @21#. Thus to the leading order, we have

~us2u§!52 ~n2/nsn§! Ds§ds , ~25!

where the mutual diffusion coefficient in the mixture is

Ds§5@~kBT!/~nmsm§!# tD . ~26!

By definition @26# the mass flux of thes species is

js5rs~us2u!52tDpds .

The continuity equation~19! can be rewritten as

Dtrs1rs“•u1“• js50, ~27!

whereDt5(] t1u•“). By assuming that“•u50, we ob-
tain the following advection-diffusion equation for an is
thermal mixture:

] trs1u•“rs5“•~tD2 1
2 !pds . ~28!

Thus the mutual diffusion coefficient given by Eq.~26! must
be modified for the LBE model,

Ds§* 5@cs
2/~nmsm§!#~tD2 1

2 !, ~29!
1-3
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to include the second-order discrete effect@33#.
Unlike the existing lattice Boltzmann models for bina

mixtures @11–13#, the diffusion coefficients of the presen
model are independent of the viscosity. The diffusion coe
cients only depend on the parametertD and other relevan
physical properties of the mixture. Also, positive and ne
tive (tD21/2) correspond to the miscible and immiscib
mixtures, respectively. We have verified, Eq.~29!, and ob-
served the phase separation when (tD21/2),0 in numerical
simulations@34#.

We have constructed a lattice Boltzmann model for bin
mixtures with several important features. The lattice Bol
mann model is directly derived from the kinetic model equ
tions using a formal discretization procedure. The latt
model thus inherits the sound physics and mathematical r
incumbent in kinetic theory. This is in contrast to previo
lattice Boltzmann models for mixtures@11–13#, which are
not directly based on the fundamental physics of kine
equations. These models rely on fictitious ‘‘interaction
@11,12# or ad hoc‘‘free energies’’@13# to produce the requi-
site mixing. These nonphysical effects present a further pr
lem since they are not easily amenable to mathema
analysis@9,10#. The heuristic elements of the previous latti
Boltzmann models@11–13# have been eliminated, resultin
in a physically justifiable model that is simple to compu
Further, due to the direct connection to kinetic theory,
derivation of the hydrodynamic equations associated with
lattice Boltzmann model is significantly simplified and re
dered mathematically more rigorous.
e
5

f
,
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The second important feature of the present work is t
the model is based upon a two-fluid theory of binary m
tures. The previous models@11–13,22#, on the other hand
are derived from a simpler, but restrictive, one-fluid theo
In the single-fluid models one is constrained to use thead
hoc ‘‘equilibrium velocity’’ @11,12,22#

u(eq)5~t§rsus1tsr§u§!/~t§rs1tsr§!

in the equilibrium f a
s(0) in order to satisfy the local conser

vation laws. As a result, the viscosity and diffusion coef
cient cannot be independently adjusted without exerting
titious interactions orad hoc free energies. The analysis o
these models becomes unnecessarily tedious and cum
some @11,12#. The models with free energies@13# do not
yield correct hydrodynamic equations@9,10#. Furthermore,
these models are single-fluid models which cannot be
plied to mixtures of species with vastly different propertie
In the present two-fluid model, the diffusion coefficient
independent of the viscosity, and is determined by the par
etertD and other relevant physical properties of the mixtu
The model is capable of simulating either miscible or imm
cible fluids by changing the sign of (tD21/2) @34#.

L.-S.L. is grateful to Professor V. Sofonea for sharing R
@22# before its publication, and to Professor D. d’Humie`res
for his insightful critical comments. This work is partiall
supported by the U.S. Air Force Office for Scientific R
search~AFOSR! under Grant No. F49620-01-1-0142.
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